Каталог@Mail.ru - каталог ресурсов интернет HitMeter - счетчик посетителей сайта, бесплатная статистика

Математическое ожидание: понятие, свойства, примеры

На главную Математический раздел Криптография и т.д. Новости

Математическое ожидание дискретных случайных величин

Пусть есть некоторая случайная величина, которая может принять одно из нескольких числовых значений (допустим, количество очков при броске кости может быть 1, 2, 3, 4, 5 или 6). Часто на практике для такой величины возникает вопрос: а какое значение она принимает "в среднем" при большом количестве тестов? Каков будет наш средний доход (или убыток) от каждой из рискованных операций?

Скажем, есть какая-то лотерея. Мы хотим понять, выгодно или нет в ней поучаствовать (или даже участвовать неоднократно, регулярно). Допустим, выигрышный каждый четвёртый билет, приз составит 300 руб., а цена любого билета - 100 руб. При бесконечно большом количестве участий получается вот что. В трёх четвертях случаев мы проиграем, каждые три проигрыша обойдутся в 300 руб. В каждом четвёртом случае мы выиграем 200 руб. (приз минус стоимость), то есть за четыре участия мы в среднем теряем 100 руб., за одно - в среднем 25 руб. Итого в среднем темпы нашего разорения составят 25 руб./билет.

Кидаем игральную кость. Если она не жульническая (без смещения центра тяжести и т.д.), то сколько мы в среднем будем иметь очков за раз? Поскольку каждый вариант равновероятен, берём тупо среднее арифметическое и получаем 3,5. Поскольку это СРЕДНЕЕ, то незачем возмущаться, что 3,5 очков никакой конкретный бросок не даст - ну нет у этого куба грани с таким числом!

Теперь обобщим наши примеры с помощью умных слов)

Обратимся к только что приведённой картинке. Слева табличка распределения случайной величины. Величина X может принимать одно из n возможных значений (приведены в верхней строке). Никаких других значений не может быть. Под каждым возможным значением снизу подписана его вероятность. Справа приведена формула, где M(X) и называется математическим ожиданием. Смысл этой величины в том, что при большом количестве испытаний (при большой выборке) среднее значение будет стремиться к этому самому математическому ожиданию.

Вернёмся опять к тому же самому игральному кубу. Математическое ожидание количества очков при броске равно 3,5 (посчитайте сами по формуле, если не верите). Скажем, вы кинули его пару раз. Выпали 4 и 6. В среднем получилось 5, то есть далеко от 3,5. Кинули ещё разок, выпало 3, то есть в среднем (4 + 6 + 3)/3 = 4,3333... Как-то далеко от математического ожидания. А теперь проведите сумасшедший эксперимент - киньте куб 1000 раз! И если в среднем и не будет ровно 3,5, то будет близко к тому.

Посчитаем математическое ожидание для выше описанной лотереи. Заветная табличка будет выглядеть вот как:

-100200
0.750.25


Тогда математическое ожидание составит 0.75 * (-100) + 0.25 * 200 = -25, как мы установили выше. Другое дело, что так же "на пальцах", без формулы, было бы трудновато, если бы имелось больше вариантов. Ну скажем, имелось бы 75% проигрышных билетов, 20% выигрышных билетов и 5% особо выигрышных.

Теперь некоторые свойства математического ожидания.

1. Математическое ожидание является линейным, то есть M[aX + bY] = aM[X] + bM[Y]. Доказать это просто:

1.1. Постоянный множитель допускается выносить за знак математического ожидания, то есть M[aX] = aM[X]. Это является частным случаем свойства линейности математического ожидания.

1.2. Другое следствие линейности математического ожидания: M[X + Y] = M[X] + M[Y], то есть математическое ожидание суммы случайных величин равно сумме математических ожиданий случайных величин.

2. Пусть X, Y - независимые случайные величины, тогда M[XY] = M[X]M[Y]. Это тоже несложно доказать) Произведение XY само представляет собой случайную величину, при этом если исходные величины могли принимать n и m значений соответственно, то XY может принимать nm значений. Вероятность каждого из значений вычисляется исходя из того, что вероятности независимых событий перемножаются. В итоге получаем вот что:

Математическое ожидание непрерывной случайной величины

У непрерывных случайных величин есть такая характеристика, как плотность распределения (плотность вероятности). Она по сути характеризует ситуацию, что некоторые значения из множества действительных чисел случайная величина принимает чаще, некоторые - реже. Например, рассмотрим вот какой график:

Здесь X - собственно случайная величина, f(x) - плотность распределения. Судя по данному графику, при опытах значение X часто будет числом, близким к нулю. Шансы же превысить 3 или оказаться меньше -3 скорее чисто теоретические.

Если известна плотность распределения, то математическое ожидание ищется как

Пусть, скажем, есть равномерное распределение:

Найдём математическое ожидание:

Это вполне соответствует интуитивному пониманию. Скажем, если мы получаем при равномерном распределении много случайных действительных чисел, каждое из отрезка [0; 1], то среднее арифметическое должно быть около 0,5.

Свойства математического ожидания - линейность и т.д., применимые для дискретных случайных величин, применимы и здесь.

copyright © Исканцев Н.В., 2012

К математическому разделу
На главную
X